Powered by RND
PodcastScienzeMeet the Microbiologist
Ascolta Meet the Microbiologist nell'app
Ascolta Meet the Microbiologist nell'app
(6 613)(250 156)
Radio preferite
Sveglia
Sleep timer

Meet the Microbiologist

Podcast Meet the Microbiologist
Ashley Hagen, M.S.
Who is microbiology? Meet the Microbiologist (MTM) introduces you to the people who discover, innovate and advance the field of microbiology. Go behind-the-...

Episodi disponibili

5 risultati 164
  • Revenge of the Microbes With Brenda Wilson and Brian Ho
    Episode Summary Mother-Son duo, Brenda Wilson, Ph.D., professor of microbiology and the Associate Director of Undergraduate Education in the School of Molecular and Cellular Biology at the University of Illinois at Urbana Champaign and Brian Ho, Ph.D., researcher and lecturer at the Institute of structural and molecular biology, a joint institute between the Department of structural and molecular biology at the University College of London and the Department of Biological Sciences at Birkbeck University of London discuss the inspiration and motivation for their recent book, Revenge of the Microbes: How Bacterial Resistance is Undermining the Antibiotic Miracle, 2nd Edition, emphasizing the global nature of AMR and providing a unique perspective on what is needed to solve it. Ashley’s Biggest Takeaways: Dynamics surrounding the AMR crisis are complex and require an understanding of many different perspectives, including those of the farmers, health care professionals, pharmaceutical companies and individuals, in order to foster true and lasting global collaboration on the issue. Point-of-care diagnostics are critical to improving treatment decisions and reducing hospital costs. Better communication and education are needed in order to rebuild trust in scientists and institutions. Continuous research is necessary, as AMR will continue to evolve. Citizens are a key piece of the puzzle when it comes to pushing for change and supporting solutions to AMR. Featured Quotes: Wilson: “I'll start with actually my Ph.D., which is talking about bacterial antibiotic biosynthesis. And so, I did some work in that arena, but since then, I've actually been working on bacterial protein toxins. These are very potent eukaryotic modulators that when bacteria get into the host, they release these proteins that are very large, that are able to interact with very specific cells. They actually get inside the cells—into the cytosol—and then they affect various signaling pathways in the host that can go anywhere from killing the cell to modulating some of the processes that the cell undertakes, even differentiating them and causing cancer. So, one of my main focuses in my lab has always been to understand the structure and function of these toxins, to understand how they affect the eukaryotic cell system. And then now that we know a lot about them, we're actually moving more into the direction of trying to basically use them as biologics. We have some platforms that we call bacterial toxin inspired drug delivery, where we're using the mechanisms of how they work and their exquisite specificities to be able to actually use them for therapeutic applications.” Ho: “I got my start doing molecular genetics, actually, with John Mekalanos at Harvard, and I was kind of at the ground floor of the seminal work looking at the Type VI secretion system. And so, I got a front row seat to the kind of discovery and a lot of the initial understanding of the system. And I've kind of taken that work and expanded beyond it to look at kind of the ways different bacteria interact with each other within microbial communities. So my current work is looking at both DNA conjugation as well as the type six antagonism, and how the bacterial interactions kind of work together to build a larger population dynamics and interface with like the hosts that kind of house a your microbial communities.” Antimicrobial Resistance Wilson: “In 2005 [when the first edition of Revenge of the Microbes was written], there was very little activity or understanding about antibiotic resistance and how important it was. Outside of the field, doctors were encountering it. But oftentimes what was happening is they just said, ‘Oh, well, we'll just find another drug, you know.’ And pharmaceutical companies, they were recognizing that there was a problem, and they would go off trying to hunt for new ones. And then right around the late 90s, there was a big impetus, because they thought, ‘Oh, we, we have a miracle here, because we now do complete genomes. We can get out the comparative genomics and all the high throughput things, all the animations,’ and that this would lead to many more new discoveries. And I think the pharmaceutical companies were very disappointed, and they started backing out of what they deemed a huge commitment. Two decades later, people already were starting to get aware, at least in the field, and even the industry and the physicians. People were getting aware, but I think that they were stumbling, because of their silos, in trying to get interactions with each other. And I think part of it was that they felt that, ‘Oh, we can try to solve it ourselves.’ And in reality, this is a problem that that is concerning everyone, and everyone is contributing to it. Everyone has to find a solution to help, and we need to have more synergy. There have to be more interactions, and we have to do this at a much more global scale. And so that was sort of what, what we thought when we first started the [2nd edition of the book, Revenge of the Microbes].” Ho: “At that point, I was just starting my new faculty position, and so I started having to teach students directly. And a lot of students were coming in and giving their presentation on their research proposal or project that they have, and they very adamantly declared the reason why we have antibiotic resistance. ‘The problem is because doctors are over prescribing antibiotics.’ And I'm scratching my head—a little like, ‘Hmm, that's a really confident statement that you're making.’ Next student comes in and they're talking about, ‘Oh, it's all the farmers that are overusing antibiotics and causing the problem.’ And then the next student comes in like, “Oh, the greedy corporations or pharmaceutical industry is trying to milk us for everything, and antibiotics are not profitable enough.’ And, and I'm sitting here listening to the students who have a very narrow perspective. And clearly, they're getting it from whoever is teaching their classes. And so, it feels like every single perspective at every single stage, they only see things through their own eyes, and can't understand what the broader perspective is and why you have all these various different problems, and I guess we call them stakeholders in the thing. It is that that every different angle has its own personal motivations. Corporations do need to have money and persist to exist. Doctors, if you encounter a patient that is dying, well, you have a moral compulsion to actually treat them. And farmers having their livestock, well, their livelihood is at stake if they don't have their animals survive, right? And so, what I think was really important that we wanted to do is present the problem of antibiotic resistance and the way it works and why it's an issue, but also convey different perspectives on it, so that if people can kind of understand where everybody else is coming from, we can come together and have a more unified perspective, or understanding, at least, so that you're not thinking that everybody is this malicious actor, and you can actually work together to come with up with a complete solution.” Wilson: “The first book, was very important, because you needed to get people's attention right, right? But we got the attention. So, now let's come up with a plan! And we don't have a good plan. People are making progress. People are moving in the directions that need to be moved, coming up with alternatives, coming up with, you know, even financial solutions, to some extent. They're not enough, still, and it's going to take a global community to come forward and buy in to the problem. And I think we still have a large sector of our whole global community that are not really fully aware of what really this problem entails. They hear on the media and the news, ‘Oh, the crisis is here. We're in danger.’ And then a year later, they say, ‘Well, what happened? Nothing's happened.’ It hasn't impacted their lives yet, right? Or at least not in a way that they've noticed. And I think this is why we need more awareness. We need to get the word out there. We need to actually start having folks that make some of the big decisions, both financially, regulatory and other types of things, like education.” Ho: “One really big problem I think that COVID introduced us to, is that it's not just that we have to convince everybody it's important, but we have to also get people, in general, the population, to trust us. You know, that there is a problem. There's been a kind of an erosion in the trustworthiness, or trust in the institutions that we relied upon that are responsible for keeping everybody safe and healthy. And I think a big part of that is also communication education, that the populace needs to be better educated, but the communication level of people in charge, as well as researchers like us—we need to speak to the people in a way that people can understand.” Wilson: “We're not saying that we have a solution, but we do have some directions that, in many areas, have started, and we feel that they need more support. And we're hoping that folks that are reading the book actually appreciate that aspect of it, and then start realizing that, ‘Hey, I'm part of this solution too.’ It can be very little—being mindful of making sure that we have clean water, making sure that we have food security, making sure that we stay healthy and, therefore, we don't have as many infections, right? Just little things like that that we can actually do as individuals, that as a whole population, will actually contribute to improving the situation. Then, of course, we have to support our leaders in making some of the decisions. We have to let them know that we care about this. And I think at this stage, what we're hoping is that we can maybe encourage some folks to take a citizen stand on this, to ask questions, to start going and probing and saying, ‘Hey, congress person, what are you doing about this?’ And maybe just start the dialog. This is all we're doing, is starting a dialog.” Links for the Episode: The 2nd Edition of Revenge of the Microbes, details the intricacies of the antibiotic-microbe arms race. Beginning with a historical perspective on antibiotics and their profound impact on both modern medicine and present-day society. It also examines the practices and policies driving the discovery and development of new antibiotics, what happens to antibiotics once they are released into the environment, how antibiotic-resistant bacteria evolve and spread and the urgency for finding alternative approaches to combating infections. For anyone interested in antimicrobial resistance (AMR), this is a completely approachable 360-degree view of a very complex topic. Get your copy of Revenge of the Microbes today! Want to get involved and spread the word about AMR? Become an ASM Advocate Bacterial Pathogenesis: a Molecular Approach Take the MTM listener survey!
    --------  
    52:06
  • Binning Singletons With Joseph James
    Joseph James, biologist at the U.S. Environmental Protection Agency, discusses his career trajectory and the creation of Binning Singletons, a unique mentorship program built on peer-to-peer networking at scientific meetings and conferences and was first implemented in 2019 at ASM Microbe. Links for the Episode Binning Singletons and Peer-to-Peer Networking Learn more about Binning Singletons. Contact Joe James: [email protected] Follow Binning Singletons on Bluesky. Binning Singletons: Mentoring through Networking at ASM Microbe 2019—mSphere article. Binning Singletons: Tackling Conference Networking When You Don’t Know Anyone—Guest post on Addgene Blog. Mastering a Mentoring Relationship as the Mentee—asm.org article that James says has really helped him explain Binning Singletons as a coaching form of mentorship. Mapping a Mentoring Roadmap and Developing a Supportive Network for Strategic Career Advancement—article on developing networks of mentors, another area Binning Singletons tries to address. #FEMSmicroBlog: Networking at Online Conferences (for Early Career Scientists). Take the MTM listener survey! James’ Research Dietary lead modulates the mouse intestinal microbiome: Subacute exposure to lead acetate and lead contaminated soil. In situ differences in nitrogen cycling related to presence of submerged aquatic vegetation in a Gulf of Mexico estuary. Quantifying stream periphyton assemblage responses to nutrient amendments with a molecular approach. Analysis of Bacterial Communities in Seagrass Bed Sediments by Double-Gradient Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rRNA Genes. Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida.
    --------  
    56:22
  • Biorisk Assessment and Management With Saeed Khan
    Saeed Khan, Ph.D., Head of the Department of Molecular Pathology at Dow diagnostic research and reference laboratory and President of the Pakistan Biological Safety Association discusses the importance and challenges of biosafety/biosecurity practices on both a local and global scale. He highlights key steps for biorisk assessment and management and stresses the importance of training, timing and technology. Ashley's Biggest Takeaways Adequate biosafety and biosecurity protocols depend on a thorough understanding of modern challenges, and scientists must be willing and able to respond to new technological threats appropriately. In the microbiology lab, the threat goes beyond the physical pathogen. Implications of genomics and cyber security must be built into biorisk management techniques, including data storage and waste management practices. Risk assessments involve evaluation of both inherent and residual risk. Inherent risk is linked to the pathogen. Residual risk varies according to the lab, equipment, employee, environment, etc. As a result, biosafety and biosecurity risks are constantly changing, and assessments must be repeated strategically and often. Khan recommended repeating a risk assessment whenever a key variable in the equation changes, i.e., new equipment, new employee, new pathogen. He also recommended (at minimum) conducting routine risk assessments every 6 months, or twice a year. Featured Quotes:  “We need to have basic biosafety and biosecurity to stay away from these bugs and the modern challenges, like cyber biosecurity and genomics. These are the new areas, which are potential threats for the future, and where we need to train our researchers and students.” “Starting from simple hand washing or hand hygiene, the basic things we use are gloves, goggles and PPE to protect the workers, the staff and the patient from getting infected from the environment, laboratory or hospitals. These are the basic things, and it's very crucial, because if one is not using gloves in the lab or not wearing the lab coat, he or she may get infected from the sample, and the patient can get infected from the physician and doctors or nurse if they are not following the basic biosafety rules. These [things] are routinely important. Every day we should practice this.” “But there are [also] new challenges. Particularly in the microbiology lab, we [used to] think that once we killed the bacteria, then it's fine. But nowadays, it's not the way we should think about it. Though you kill the bacteria practically, it still has a sequence, [which] we call the genome, and if you have that information with you, you theoretically have the potential to recreate that pathogen… that can be used or maybe misused as well.” “[Working with] scripts of pathogens, like smallpox or the polioviruses, we call this synthetic biology. Different scientists are doing it for the right purposes, like for production of vaccines, to find new therapeutics, to understand the pathology of the diseases. But on [the other hand]—we call it dual use research of concern (DURC)—the same can be misused as well. That's why it's very important to be aware of the bugs that we are working with, and the potential of that pathogen or microbe, to the extent that can be useful or otherwise.” “So, we should be aware of the new concern of the technology, synthetic biology and DURC. These are new concepts—cyber, biosecurity and information security [are all] very much important these days. You cannot be relaxed being in the microbiology lab. Once we have identified a pathogen, declared a result to the patient and the physician, and it's been treated, we [still] need to be worried about waste management—that we discard that waste properly and we have proper inventory control of our culture. It should be safe in the locker or on in the freezers and properly locked, so we should not be losing any single tube of the culture, otherwise it may be misused.” Risk Assessment “The best word that you have used is risk assessment. So, it should gage the severity of the issue. We should not over exaggerate the risk, and we should not undermine the risk. Once the risk assessment been made, we can proceed.” “Right from the beginning of touching a patient or a sample of the patient until the end of discarding the sample, that is called biorisk management. It's a complete science that we need to be aware of—not in bits and pieces. Rather a comprehensive approach should be adopted, and each and every person in the organization should be involved. Otherwise, we may think [we are] doing something good, but someone else may spoil the whole thing, and it will be counterproductive at the end.” “We should involve each and every person working with us and the lab, and we should empower them. They should feel ownership that they are working with us, and they are [as] responsible as we are. So, this the whole process needs to be properly engaged. People must be engaged, and they should be empowered, and they should be responsible.” “Each and every lab has different weaknesses and strengths of their own, which play an important role in the risk assessment.” “There is inherent risk, which is linked with the pathogen, and there is another thing we call residual risk. So, residual risk everywhere and varies. Though the inherent risk may be the same, the residual risk is based on the training of the person, the lab facility that is available, the resources that labs have and the potential threats from the environment.” “It's not usually possible that you do a risk assessment every day. So, when you have different factors involving a new pathogen in your lab, you have new equipment in your in your lab, or some new employee in your lab—[a new] variable factor that is involved—you should [perform] the risk assessment. Otherwise, [a routine risk assessment] should [be done] twice a year, after 6 months.” “Training is important, and response time is very much crucial. And different technology plays a vital role, but the lack of technology should not be an excuse for not responding. There is always an alternative on the ground that you may do the risk assessment. And within the given resources and facility, we should mimic the technology and respond to any outbreaks or disease within our given resources.” Links for the Episode ASM Guidelines for Biosafety in Teaching Laboratories Pakistan Biological Safety Association Training to be a Biosafety Professional (video) Take the MTM listener survey!
    --------  
    49:59
  • From Hydrothermal Vents to Cold Seeps: How Bacteria Sustain Ocean Life With Nicole Dubilier
    Nicole Dubilier, Ph.D., Director and head of the Symbiosis Department at the Max Planck Institute for Marine Microbiology, has led numerous reserach cruises and expeditions around the world studying the symbiotic relationships of bacteria and marine invertebrates. She discusses how the use of various methods, including deep-sea in situ tools, molecular, 'omic' and imaging analyses, have illuminated remarkable geographic, species and habitat diversity amongst symbionts and emphasizes the importance of discovery-driven research over hypothesis-driven methods. Watch this episode: https://www.youtube.com/watch?v=OC9vqE1visc Ashley's Biggest Takeaways: In 1878, German surgeon, botanist and microbiologist, Heinrich Anton de Bary, first described symbiosis as the living together of two or more different organisms in close physical intimacy for a longer period of time.  These relationships can be beneficial, detrimental or commensal, depending on the organisms involved.  Microbial symbiosis research holds great potential to contribute to sustainable energy production and environmental health. Links for This Episode: Learn more about one of Dubilier's research vessels and see videos from the expidition. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Chemosynthetic symbioses: Primer. Take the MTM listener survey!
    --------  
    30:59
  • When Proteins Become Infectious: Understanding Prion Disease With Neil Mabbott
    From Bovine Spongiform Encephalopathy (BSE) to Creutzfeldt-Jakob disease (CJD), Neil Mabbott, Ph.D., has worked for nearly 2 decades on understanding the mechanisms by which prion proteins become infectious and cause neurological disease in humans and animals. He discusses the remarkable properties of prions and addresses complexities surrounding symptoms, transmission and diagnosis of prion disease.
    --------  
    55:53

Altri podcast di Scienze

Su Meet the Microbiologist

Who is microbiology? Meet the Microbiologist (MTM) introduces you to the people who discover, innovate and advance the field of microbiology. Go behind-the-scenes of the microbial sciences with experts in virology, bacteriology, mycology, parasitology and more! Share in their passion for microbes and hear about research successes and even a few setbacks in their field. MTM covers everything from genomics, antibiotic resistance, synthetic biology, emerging infectious diseases, microbial ecology, public health, social equity, host-microbe biology, drug discovery, artificial intelligence, the microbiome and more! From graduate students to working clinicians and emeritus professors, host, Ashley Hagen, Scientific and Digital Editor at the American Society for Microbiology, highlights professionals in all stages of their careers, gleaning wisdom, career advice and even a bit of mentorship along the way.
Sito web del podcast

Ascolta Meet the Microbiologist, Houston e molti altri podcast da tutto il mondo con l’applicazione di radio.it

Scarica l'app gratuita radio.it

  • Salva le radio e i podcast favoriti
  • Streaming via Wi-Fi o Bluetooth
  • Supporta Carplay & Android Auto
  • Molte altre funzioni dell'app